Mechanisms of TFAM-mediated cardiomyocyte protection
Autor: | Nicholas Thelian, Pankaj Chaturvedi, George H. Kunkel, Suresh C. Tyagi, Rohit Nair |
---|---|
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Mitochondrial DNA Physiology Regulator chemistry.chemical_element Biology Calcium MMP9 Cell Line Sarcoplasmic Reticulum Calcium-Transporting ATPases Mitochondrial Proteins 03 medical and health sciences Mice Physiology (medical) Animals Myocytes Cardiac Pharmacology chemistry.chemical_classification Reactive oxygen species 030102 biochemistry & molecular biology NFATC Transcription Factors Calpain NFAT General Medicine Hydrogen Peroxide TFAM Molecular biology DNA-Binding Proteins 030104 developmental biology chemistry Matrix Metalloproteinase 9 CRISPR-Cas Systems Peptide Hydrolases Transcription Factors |
Zdroj: | Canadian journal of physiology and pharmacology. 96(2) |
ISSN: | 1205-7541 |
Popis: | Although mitochondrial transcription factor A (TFAM) is a protective component of mitochondrial DNA and a regulator of calcium and reactive oxygen species (ROS) production, the mechanism remains unclear. In heart failure, TFAM is significantly decreased and cardiomyocyte instability ensues. TFAM inhibits nuclear factor of activated T cells (NFAT), which reduces ROS production; additionally, TFAM transcriptionally activates SERCA2a to decrease free calcium. Therefore, decreasing TFAM vastly increases protease expression and hypertrophic factors, leading to cardiomyocyte functional decline. To examine this hypothesis, treatments of 1.0 μg of a TFAM vector and 1.0 μg of a CRISPR-Cas9 TFAM plasmid were administered to HL-1 cardiomyocytes via lipofectamine transfection. Western blotting and confocal microscopy analysis show that CRISPR-Cas9 knockdown of TFAM significantly increased proteases Calpain1, MMP9, and regulators Serca2a, and NFAT4 protein expression. CRISPR knockdown of TFAM in HL-1 cardiomyocytes upregulates degradation factors, leading to cardiomyocyte instability. Hydrogen peroxide oxidative stress decreased TFAM expression and increased Calpain1, MMP9, and NFAT4 protein expression. TFAM overexpression normalizes pathological hypertrophic factor NFAT4 in the presence of oxidative stress. |
Databáze: | OpenAIRE |
Externí odkaz: |