Lp-maximal regularity for non-autonomous evolution equations

Autor: Wolfgang Arendt, César Poupaud, Ralph Chill, Simona Fornaro
Rok vydání: 2007
Předmět:
Zdroj: Journal of Differential Equations. 237:1-26
ISSN: 0022-0396
DOI: 10.1016/j.jde.2007.02.010
Popis: Let A:[0,τ]→L(D,X) be strongly measurable and bounded, where D, X are Banach spaces such that D↪X. We assume that the operator A(t) has maximal regularity for all t∈[0,τ]. Then we show under some additional hypothesis (viz. relative continuity) that the non-autonomous problem(P)u˙+A(t)u=fa.e. on (0,τ),u(0)=x, is well-posed in Lp; i.e. for all f∈Lp(0,τ;X) and all x∈(X,D)1p∗,p there exists a unique u∈W1,p(0,τ;X)∩Lp(0,τ;D) solution of (P), where 1
Databáze: OpenAIRE