Mixture density network estimation of continuous variable maximum likelihood using discrete training samples

Autor: Spencer Stubbs, Charles Burton, Peter Onyisi
Rok vydání: 2021
Předmět:
Zdroj: European Physical Journal C: Particles and Fields, Vol 81, Iss 7, Pp 1-9 (2021)
European Physical Journal
ISSN: 1434-6052
1434-6044
DOI: 10.1140/epjc/s10052-021-09469-y
Popis: Mixture density networks (MDNs) can be used to generate posterior density functions of model parameters $$\varvec{\theta }$$ θ given a set of observables $${\mathbf {x}}$$ x . In some applications, training data are available only for discrete values of a continuous parameter $$\varvec{\theta }$$ θ . In such situations, a number of performance-limiting issues arise which can result in biased estimates. We demonstrate the usage of MDNs for parameter estimation, discuss the origins of the biases, and propose a corrective method for each issue.
Databáze: OpenAIRE