Improvement of Extracted Power of Pole Mounted Solar Panels by Effective Cooling Using Aluminum Heat Sink under Hot Weather and Variable Wind Speed Conditions
Autor: | Abdulaziz Alshreef, Abdelali El Aroudi, Youssef Hassan, Omar M. Al-Rabghi, Badr A. Habeebullah, Mohamed A. Ismeil, Mohamed Orabi |
---|---|
Rok vydání: | 2020 |
Předmět: |
Control and Optimization
020209 energy Nuclear engineering solar panel and excessive heat Energy Engineering and Power Technology 02 engineering and technology Heat sink solar panel performance photovoltaic (PV) cell heat sink back surface cooling of photovoltaic panel lcsh:Technology Wind speed law.invention Operating temperature law Range (aeronautics) Solar cell 0202 electrical engineering electronic engineering information engineering Electrical and Electronic Engineering Engineering (miscellaneous) Operating point lcsh:T Renewable Energy Sustainability and the Environment Building and Construction 021001 nanoscience & nanotechnology Power (physics) Heat transfer Environmental science 0210 nano-technology Energy (miscellaneous) |
Zdroj: | Energies, Vol 13, Iss 3159, p 3159 (2020) Energies; Volume 13; Issue 12; Pages: 3159 |
ISSN: | 1996-1073 |
DOI: | 10.3390/en13123159 |
Popis: | The increase in operating temperature of PV generators leads to degradation of their performance. These adverse effects of high temperatures are considered as one of the most important problems that solar panel operation faces in hot weather areas. A lot of research has been undertaken to study this aspect and find ways of limiting the harm caused by such high temperatures. To overcome this harm and to maintain the operating temperature of the PV cells within the optimum range specified by manufacturers, cooling the solar panels often becomes indispensable. This paper discusses the heat transfer through the solar panel layers and studies the effect of high temperature on the solar panel performance in a hot desert environment. It also presents the development of a new solar panel structure viz. by installing an aluminum heat sink to reduce the effect of temperature rise and thus improve the solar panel performance. The study focuses on a pole-mounted solar panel for a street lighting apparatus in extremely hot desert conditions with fluctuating wind speeds. It will be shown that adding an aluminum heat sink to the solar panel bottom mitigates the effect of increased temperature and hence modifies the solar panel operating point by increasing both the efficiency and the lifetime. The solar cell temperature is decreased by 16.4% as a result of the aluminum heat sink installation on the solar panel back sheet and consequently, the accumulated energy produced by the the solar panel is increased by 13.23% per day. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |