Bayesian Generative Model Based on Color Histogram of Oriented Phase and Histogram of Oriented Optical Flow for Rare Event Detection in Crowded Scenes

Autor: Dieudonné Fabrice Atrevi, Bruno Emile, Damien Vivet
Přispěvatelé: Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Institut National des Sciences Appliquées - INSA (FRANCE), Université d'Orléans (FRANCE), ATREVI, Dieudonné, Laboratoire pluridisciplinaire de recherche en ingénierie des systèmes, mécanique et énergétique (PRISME), Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Département Electronique, Optronique et Signal (DEOS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Color histogram
Histograms
Computer science
Feature extraction
Optical flow
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
02 engineering and technology
[INFO] Computer Science [cs]
Latent Dirichlet allocation
Optical imaging
symbols.namesake
[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Histogram
0202 electrical engineering
electronic engineering
information engineering

[INFO]Computer Science [cs]
Data mining
ComputingMilieux_MISCELLANEOUS
Visualization
business.industry
Resource management
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Optique / photonique
Pattern recognition
Filter (signal processing)
Generative model
symbols
020201 artificial intelligence & image processing
Artificial intelligence
Event detection
business
Zdroj: ICASSP 2018-2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ICASSP 2018-2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2018, Calgary, Canada. pp.3126-3130
ICASSP
Popis: In this paper, we propose a new method for rare event detection in crowded scenes using a combination of Color Histogram of Oriented Phases (CHOP) and Histogram of Oriented Optical Flow (HOOF). We propose to detect and filter spatio-temporal interest points (STIP) based on the visual saliency information of the scene. Once salient STIPs are detected, the motion and appearance information of the surrounding scene are extracted. Finally, the extracted information from normal scenes are modelled by using a Bayesian generative model (Latent Dirichlet Allocation). The rare events are detected by processing the likelihood of the current scene in regard to the obtained model. The proposed method has been tested on the publicly available UMN dataset and compared with different state-of-the-art algorithms. We have shown that our method is very competitive and provides promising results.
Databáze: OpenAIRE