La Mecánica Cuántica Ortodoxa: una teoría tan exitosa como incoherente

Autor: María Esther Burgos
Rok vydání: 2017
Předmět:
Zdroj: Metatheoria
RIDAA (UNQ)
Universidad Nacional de Quilmes
instacron:UNQ
ISSN: 1853-2330
1853-2322
DOI: 10.48160/18532330me7.152
Popis: Fil: Burgos, María Esther. Universidad de Los Andes. Facultad de Ciencias. Departamento de Física; Colombia. Burgos, M. E. (2017). La mecánica cuántica ortodoxa: una teoría tan exitosa como incoherente. Metatheoria, 7(2), 39-46. La Mecánica Cuántica Ortodoxa es sumamente exitosa en el terreno experimental, pero tiene serios problemas conceptuales. Entre otras objeciones se han señalado: su conflicto con el determinismo, que admite una forma de acción a distancia y que renuncia al realismo. El formalismo de la Mecánica Cuántica Ortodoxa involucra dos leyes de cambio del estado del sistema: la Ecuación de Schrödinger y el Postulado de Proyección. La primera, que es una ley determinista, gobierna los procesos espontáneos. La segunda rige los procesos de medición de acuerdo con las leyes de las probabilidades. Existe acuerdo en que para resolver problemas que incluyen la variable temporal, es necesario utilizar la Teoría de Perturbaciones Dependientes del Tiempo. Un análisis cuidadoso pone en evidencia que esta teoría requiere la aplicación de ambas leyes de cambio del estado del sistema. Esto vale, en particular, para procesos espontáneos donde, de acuerdo con los postulados de la Mecánica Cuántica Ortodoxa, el Postulado de Proyección no debería desempeñar ningún papel. La necesidad de utilizar este postulado para dar cuenta de procesos espontáneos es una contradicción flagrante que no hemos visto reportada en la literatura. The experimental success of Orthodox Quantum Mechanics is imposing, but it confronts conceptual flaws. It opposes determinism, admits a peculiar form of action-at-a-distance and renounces realism. Orthodox Quantum Mechanics formalism involves two different laws of change of the state of the system: the Schrödinger Equation and the Projections Postulate. Spontaneous processes are governed by the former, a deterministic law. The second rules measurement processes according to probability laws. It is agreed that Time -Dependent Perturbation Theory must be used for solving problems involving time. A careful analysis makes apparent that this theory involves both laws of change. This is also true for spontaneous processes, where the Projection Postulate is supposed to play no role. The need to invoke a law valid only in cases where measurements are performed to account for spontaneous processes is an incoherence that we have not seen mentioned in the literature.
Databáze: OpenAIRE