Singular (p, q)-equations with superlinear reaction and concave boundary condition
Autor: | Calogero Vetro, Nikolaos S. Papageorgiou, Francesca Vetro |
---|---|
Přispěvatelé: | Papageorgiou N.S., Vetro C., Vetro F. |
Rok vydání: | 2020 |
Předmět: |
singular term
Concave and convex nonlinearities nonlinear maximum principle Applied Mathematics 010102 general mathematics Mathematical analysis Singular term Boundary (topology) Mathematics::Spectral Theory 01 natural sciences 010101 applied mathematics comparison principles Nonlinear system Settore MAT/05 - Analisi Matematica nonlinear regularity theory Boundary value problem 0101 mathematics truncation (p q)-Laplacian Analysis Parametric statistics Mathematics |
Zdroj: | Applicable Analysis. 101:891-913 |
ISSN: | 1563-504X 0003-6811 |
DOI: | 10.1080/00036811.2020.1761018 |
Popis: | We consider a parametric nonlinear elliptic problem driven by the sum of a p-Laplacian and of a q-Laplacian (a (Formula presented.) -equation) with a singular and (Formula presented.) -superlinear reaction and a Robin boundary condition with (Formula presented.) -sublinear boundary term (Formula presented.). So, the problem has the combined effects of singular, concave and convex terms. We look for positive solutions and prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies. |
Databáze: | OpenAIRE |
Externí odkaz: |