Singular (p, q)-equations with superlinear reaction and concave boundary condition

Autor: Calogero Vetro, Nikolaos S. Papageorgiou, Francesca Vetro
Přispěvatelé: Papageorgiou N.S., Vetro C., Vetro F.
Rok vydání: 2020
Předmět:
Zdroj: Applicable Analysis. 101:891-913
ISSN: 1563-504X
0003-6811
DOI: 10.1080/00036811.2020.1761018
Popis: We consider a parametric nonlinear elliptic problem driven by the sum of a p-Laplacian and of a q-Laplacian (a (Formula presented.) -equation) with a singular and (Formula presented.) -superlinear reaction and a Robin boundary condition with (Formula presented.) -sublinear boundary term (Formula presented.). So, the problem has the combined effects of singular, concave and convex terms. We look for positive solutions and prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.
Databáze: OpenAIRE