Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane

Autor: David B. Iaea, Shu Mao, Frederik W. Lund, Frederick R. Maxfield
Rok vydání: 2017
Předmět:
Zdroj: Molecular Biology of the Cell
ISSN: 1939-4586
1059-1524
DOI: 10.1091/mbc.e16-07-0499
Popis: The kinetics of sterol transport between the plasma membrane and the endocytic recycling compartment is measured using fluorescence microscopy. STARD4, a small, soluble sterol transport protein, is responsible for 25% of the total transport and 33% of nonvesicular transport. Elevated cholesterol dramatically increases sterol transport rate constants.
Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t1/2 =12–15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC.
Databáze: OpenAIRE