The first polynomial self-stabilizing 1-maximal matching algorithm for general graphs
Autor: | Johanne Cohen, Jonas Lefèvre, Khaled Maâmra, Laurence Pilard, George Manoussakis |
---|---|
Přispěvatelé: | Graphes, Algorithmes et Combinatoire (LRI) (GALaC - LRI), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique Parallélisme Réseaux Algorithmes Distribués (LI-PaRAD), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2019 |
Předmět: |
Polynomial
General Computer Science Matching (graph theory) Computer science [SCCO.COMP]Cognitive science/Computer science 0102 computer and information sciences 02 engineering and technology 01 natural sciences Graph Theoretical Computer Science 010201 computation theory & mathematics 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Time complexity Algorithm Boolean data type ComputingMilieux_MISCELLANEOUS |
Zdroj: | Theoretical Computer Science Theoretical Computer Science, Elsevier, 2019, 782, pp.54-78. ⟨10.1016/j.tcs.2019.02.031⟩ |
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2019.02.031 |
Popis: | We present the first polynomial self-stabilizing algorithm for finding a 1-maximal matching in a general graph. The previous best known algorithm has been presented by Manne et al. [20] and we show in this paper it has a sub-exponential time complexity under the distributed adversarial daemon. Our new algorithm is an adaptation of the Manne et al. algorithm and works under the same daemon, but with a complexity in O ( m × n 2 ) moves, with n is the number of nodes and m is the number of edges. This is the first self-stabilizing algorithm that solve this problem with a polynomial complexity. Moreover, our algorithm only needs one more boolean variable than the previous one. |
Databáze: | OpenAIRE |
Externí odkaz: |