Evaluation of Radiative Transfer Models With Clouds

Autor: Yuk L. Yung, Stephan Havemann, Xianglei Huang, Xu Liu, Xiuhong Chen, Evan Manning, Marco Matricardi, Carmine Serio, Qiguang Yang, Giuliano Liuzzi, Sergio DeSouza-Machado, Isaac Moradi, Hartmut H. Aumann, Guido Masiello, Alan J. Geer, Wan Wu, Evan Fishbein, Jerome Vidot, L. Larrabee Strow, Vijay Natraj, R. Chris Wilson
Přispěvatelé: Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres, 2018, 123 (11), pp.6142-6157. ⟨10.1029/2017JD028063⟩
Journal of Geophysical Research: Atmospheres, American Geophysical Union, 2018, 123 (11), pp.6142-6157. ⟨10.1029/2017JD028063⟩
ISSN: 2169-897X
2169-8996
DOI: 10.1029/2017JD028063⟩
Popis: Data from hyperspectral infrared sounders are routinely ingested worldwide by National Weather Centers (NWCs). The cloud-free fraction of this data is used for initializing forecasts which include profiles of temperature, water vapor, water cloud and ice cloud profiles on a global grid. Although the data from these sounders are sensitive to the vertical distribution of ice and liquid water in clouds, this information is not fully utilized. In the future, this information could be used for validating clouds in NWC models and for initializing forecasts. We evaluate how well the calculated radiances from hyperspectral Radiative Transfer Models (RTMs) compare to cloudy radiances observed by AIRS and to one another. Vertical profiles of the clouds, temperature and water vapor from ECMWF (European Center for Medium-range Weather Forecasting) were used as input for the RTMs. For non-frozen ocean day and night data, the histograms derived from the calculations by several RTMs at 900 cm(exp -1)have a better than 0.95 correlation with the histogram derived from the AIRS observations, with a bias relative to AIRS of typically less than 2 K. Differences in the cloud physics and cloud overlap assumptions result in little bias between the RTMs, but the standard deviation of the differences ranges from 6 to 12 K. Results at 2616 cm(exp -1) at night are reasonably consistent with results at 900 cm(exp -1). Except for RTMs which use full scattering calculations, the bias and histogram correlations at 2616 cm(exp -1) are inferior to those at 900 cm(exp -1) for daytime calculations.
Databáze: OpenAIRE