Estimating Slope and Level Change in N = 1 Designs
Autor: | Patrick Onghena, Rumen Manolov, Antonio Solanas |
---|---|
Přispěvatelé: | Universitat de Barcelona |
Rok vydání: | 2010 |
Předmět: |
Matching (statistics)
Investigació de cas únic Test data generation Monte Carlo method Poison control Single-subject research Estadística Psychological research Bias Arts and Humanities (miscellaneous) Behavior Therapy Outcome Assessment Health Care Statistics Computer Graphics Developmental and Educational Psychology Humans Computer Simulation skin and connective tissue diseases Mathematical Computing Analysis of Variance Models Statistical Single subject research Data Collection Autocorrelation Estimator Variance (accounting) Clinical Psychology Investigació psicològica sense organs Psychology Monte Carlo Method Software |
Zdroj: | Dipòsit Digital de la UB Universidad de Barcelona Recercat. Dipósit de la Recerca de Catalunya instname |
ISSN: | 1552-4167 0145-4455 |
DOI: | 10.1177/0145445510363306 |
Popis: | The current study proposes a new procedure for separately estimating slope change and level change between two adjacent phases in single-case designs. The procedure eliminates baseline trend from the whole data series before assessing treatment effectiveness. The steps necessary to obtain the estimates are presented in detail, explained, and illustrated. A simulation study is carried out to explore the bias and precision of the estimators and compare them to an analytical procedure matching the data simulation model. The experimental conditions include 2 data generation models, several degrees of serial dependence, trend, and level and/or slope change. The results suggest that the level and slope change estimates provided by the procedure are unbiased for all levels of serial dependence tested and trend is effectively controlled for. The efficiency of the slope change estimator is acceptable, whereas the variance of the level change estimator may be problematic for highly negatively autocorrelated data series. |
Databáze: | OpenAIRE |
Externí odkaz: |