Portfolio implementation risk management using evolutionary multiobjective optimization

Autor: Roman Denysiuk, Sandra Garcia-Rodriguez, António Gaspar-Cunha, David Quintana
Přispěvatelé: Departamento Lenguajes y Ciencias de la Computación (LCC), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Universidade do Minho = University of Minho [Braga], Laboratoire d'analyse des données et d'intelligence des systèmes (LADIS), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Spanish Ministry of Economy and Competitivity under grant ENE2014-56126-C2-2-R, Portuguese Foundation for Science and Technology under grant PEst-C/CTM/LA0025/2013 (Projecto Estrategico-LA 25-2013-2014-Strategic Project-LA 25-2013-2014), Universidade do Minho, Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Spanish Ministry of Economy and Competitivity under grant ENE2014-56126-C2-2-RPortuguese Foundation for Science and Technology under grant PEst-C/CTM/LA0025/2013 (Projecto Estrategico-LA 25-2013-2014-Strategic Project-LA 25-2013-2014)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
evolutionary computation
multiobjective optimization
portfolio optimization
robustness
ROBUST OPTIMIZATION
Mathematical optimization
Computer science
[QFIN.PM]Quantitative Finance [q-fin]/Portfolio Management [q-fin.PM]
0211 other engineering and technologies
02 engineering and technology
Multi-objective optimization
lcsh:Technology
Evolutionary computation
lcsh:Chemistry
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
0202 electrical engineering
electronic engineering
information engineering

General Materials Science
Trading strategy
Robustness (economics)
Instrumentation
lcsh:QH301-705.5
Risk management
Fluid Flow and Transfer Processes
021103 operations research
Science & Technology
business.industry
lcsh:T
Process Chemistry and Technology
General Engineering
Ciências Naturais::Ciências da Computação e da Informação
lcsh:QC1-999
Computer Science Applications
lcsh:Biology (General)
lcsh:QD1-999
multi-objective optimization
lcsh:TA1-2040
Portfolio
020201 artificial intelligence & image processing
Ciências da Computação e da Informação [Ciências Naturais]
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Project portfolio management
Portfolio optimization
business
lcsh:Engineering (General). Civil engineering (General)
lcsh:Physics
Zdroj: Applied Sciences
Applied Sciences, 2017, 7 (10), pp.1079. ⟨10.3390/app7101079⟩
Applied Sciences, MDPI, 2017, 7 (10), pp.1079. ⟨10.3390/app7101079⟩
Applied Sciences, Vol 7, Iss 10, p 1079 (2017)
Applied Sciences; Volume 7; Issue 10; Pages: 1079
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
ISSN: 2076-3417
DOI: 10.3390/app7101079⟩
Popis: Portfoliomanagementbasedonmean-varianceportfoliooptimizationissubjecttodifferent sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancybetweentargetandpresentportfolios,causedbytradingstrategies,mayexposeinvestors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix.
Sandra Garcia-Rodriguez and David Quintana acknowledge financial support granted by the Spanish Ministry of Economy and Competitivity under grant ENE2014-56126-C2-2-R. Roman Denysiuk and Antonio Gaspar-Cunha were supported by the Portuguese Foundation for Science and Technology under grant PEst-C/CTM/LA0025/2013 (Projecto Estratégico-LA 25-2013-2014-Strategic Project-LA 25-2013-2014).
info:eu-repo/semantics/publishedVersion
Databáze: OpenAIRE