Testing the Augmented Binary Multiclass SVM on Microarray Data

Autor: Davide Anguita, Sandro Ridella, Dario Sterpi
Rok vydání: 2006
Předmět:
Zdroj: IJCNN
DOI: 10.1109/ijcnn.2006.1716351
Popis: In this paper we test a new multicategory SVM method, called augmented binary (AB), on microarray gene expression data. The AB SVM is one of the methods generating a multicategory classifier in one step, without dividing the multiclass problem into binary subproblems. This approach can be useful when the number of samples is very low, like in this kind of application. Furthermore, the use of a single SVM, instead of several binary ones, simplifies the search for optimal hyperparameters and allows a consistent output for all the classes.
Databáze: OpenAIRE