Materialized View Selection for XQuery Workloads

Autor: Ioana Manolescu, Vasilis Vassalos, Asterios Katsifodimos
Přispěvatelé: Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Database optimizations and architectures for complex large data (OAK), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Department of Informatics [Athens] (CS-AUEB), Mobile Multimedia Laboratory [Athens], Athens University of Economics and Business (AUEB)-Athens University of Economics and Business (AUEB), Katsifodimos, Asterios
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: SIGMOD-ACM SIGMOD International Conference on Management of Data 2012
SIGMOD-ACM SIGMOD International Conference on Management of Data 2012, May 2012, Scottsdale, Arizona, United States
SIGMOD Conference
Popis: International audience; The efficient processing of XQuery still poses significant challenges. A particularly effective technique to improve XQuery processing performance consists of using materialized views to answer queries. In this work, we consider the problem of choosing the best views to materialize within a given space budget in order to improve the performance of a query workload. The paper is the first to address the view selection problem for queries and views with value joins and multiple return nodes. The challenges we face stem from the expressive power and features of both the query and view languages and from the size of the search space of candidate views to materialize. While the general problem has prohibitive complexity, we propose and study a heuristic algorithm and demonstrate its superior performance compared to the state of the art.
Databáze: OpenAIRE