GIT quotient of a Bott–Samelson–Demazure–Hansen variety by a maximal torus
Autor: | S S Kannan, J F Thomsen |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Kannan, S S & Thomsen, J F 2019, ' GIT quotient of a Bott–Samelson–Demazure–Hansen variety by a maximal torus ', Proceedings of the Indian Academy of Sciences: Mathematical Sciences, vol. 129, no. 2, 25 . https://doi.org/10.1007/s12044-019-0470-3 |
ISSN: | 0973-7685 0253-4142 |
DOI: | 10.1007/s12044-019-0470-3 |
Popis: | Let G be an almost simple, simply connected algebraic group over the field $$\mathbb {C}$$ of complex numbers. Let B be a Borel subgroup of G containing a maximal torus T of G, and let W be the Weyl group defined by T. The Borel group B determines a subset of simple reflections in W. For w in W, we let $$Z(w,\underline{i})$$ be the Bott–Samelson–Demazure–Hansen variety corresponding to a reduced expression $$\underline{i}$$ of w as a product of these simple reflections. In this article, we study the geometric invariant theoretic quotient of $$Z(w,\underline{i})$$ for the T-linearized ample line bundles. |
Databáze: | OpenAIRE |
Externí odkaz: |