GIT quotient of a Bott–Samelson–Demazure–Hansen variety by a maximal torus

Autor: S S Kannan, J F Thomsen
Rok vydání: 2019
Předmět:
Zdroj: Kannan, S S & Thomsen, J F 2019, ' GIT quotient of a Bott–Samelson–Demazure–Hansen variety by a maximal torus ', Proceedings of the Indian Academy of Sciences: Mathematical Sciences, vol. 129, no. 2, 25 . https://doi.org/10.1007/s12044-019-0470-3
ISSN: 0973-7685
0253-4142
DOI: 10.1007/s12044-019-0470-3
Popis: Let G be an almost simple, simply connected algebraic group over the field $$\mathbb {C}$$ of complex numbers. Let B be a Borel subgroup of G containing a maximal torus T of G, and let W be the Weyl group defined by T. The Borel group B determines a subset of simple reflections in W. For w in W, we let $$Z(w,\underline{i})$$ be the Bott–Samelson–Demazure–Hansen variety corresponding to a reduced expression $$\underline{i}$$ of w as a product of these simple reflections. In this article, we study the geometric invariant theoretic quotient of $$Z(w,\underline{i})$$ for the T-linearized ample line bundles.
Databáze: OpenAIRE