Modeling and Control of Multiphase Interleaved Fuel-Cell Boost Converter based on Hamiltonian Control Theory for Transportation Applications

Autor: P. Mungporn, Burin Yodwong, Babak Nahid-Mobarakeh, Damien Guilbert, Piyabut Burikham, Serge Pierfederici, Zahir Shah, Nicu Bizon, Poom Kumam, Anusak Bilsalam, Surin Khomfoi, Phatiphat Thounthong, Chainarin Ekkaravarodome
Přispěvatelé: Renewable Energy Research Centre, Thai-French Innovation Institute Centre (RERC), King Mongkut's University of Technology North Bangkok (KMUTNB), Laboratoire d'Energétique et de Mécanique Théorique Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Groupe de Recherche en Energie Electrique de Nancy (GREEN), Université de Lorraine (UL), Universitatea din Pitesti [Roumanie] (UPIT), King Mongkut’s University of Technology Thonburi [Bangkok], Chulalongkorn University [Bangkok], Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), McMaster University [Hamilton, Ontario], Abdul Wali Khan University, King Mongkut’s Institute of Technology Ladkrabang (KMITL)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: IEEE Transactions on Transportation Electrification
IEEE Transactions on Transportation Electrification, Institute of Electrical and Electronics Engineers, 2020, pp.1-1. ⟨10.1109/TTE.2020.2980193⟩
IEEE Transactions on Transportation Electrification, Institute of Electrical and Electronics Engineers, 2020, 6 (2), pp.519-529. ⟨10.1109/TTE.2020.2980193⟩
ISSN: 2577-4212
2332-7782
DOI: 10.1109/TTE.2020.2980193⟩
Popis: International audience; This article presents a multiphase interleaved boost converter supplied by a fuel-cell (FC)/reformer power source for highly dynamic transportation applications. A control theory based on the Hamiltonian function approach is considered. Using the port-controlled Hamiltonian system, we propose simple solutions to the dynamic performance and convergence problems when an interaction occurs between the power sources and constant power loads. To corroborate the proposed control law, an FC boost converter (2.5-kW two-phase interleaved converter) is used and investigated in the laboratory. The methanol FC system is composed of a fuel reformer reactor that transforms water and methanol liquid fuel into hydrogen gas to a polymer electrolyte membrane FC stack (2.5 kW, 50 V). The studied control approach is realized by digital calculation using a MicroLabBox controller board (dSPACE platform). The simulation using the MATLAB/Simulink program and the experimental results validate that our proposed solution is an excellent control algorithm for highly dynamic power-load cycles.
Databáze: OpenAIRE