Weak invariance principle in Besov spaces for stationary martingale differences

Autor: Alfredas Račkauskas, Davide Giraudo
Přispěvatelé: Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), VU Institute of Mathematics and Informatics (IMI), Vilnius University [Vilnius], Giraudo, Davide
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Popis: The classical Donsker weak invariance principle is extended to a Besov spaces framework. Polygonal line processes build from partial sums of stationary martingale differences as well independent and identically distributed random variables are considered. The results obtained are shown to be optimal.
Databáze: OpenAIRE