Sampling High-Dimensional Gaussian Distributions for General Linear Inverse Problems

Autor: Olivier Féron, J-F Giovannelli, François Orieux
Přispěvatelé: Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie (EDF R&D OSIRIS), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2012
Předmět:
high-dimensional sampling
Mathematical optimization
myopic
Gaussian
Inverse
02 engineering and technology
symbols.namesake
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
semi-blind
0202 electrical engineering
electronic engineering
information engineering

unsupervised
Applied mathematics
Electrical and Electronic Engineering
[STAT.CO]Statistics [stat]/Computation [stat.CO]
Sparse matrix
Mathematics
Hyperparameter
[STAT.AP]Statistics [stat]/Applications [stat.AP]
Estimation theory
Applied Mathematics
Stochastic sampling
020206 networking & telecommunications
[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]
Inverse problem
Covariance
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
Signal Processing
symbols
inverse problem
020201 artificial intelligence & image processing
Bayesian strategy
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Gibbs sampling
Zdroj: IEEE Signal Processing Letters
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2012, 19 (5), pp.251. ⟨10.1109/LSP.2012.2189104⟩
IEEE Signal Processing Letters, 2012, 19 (5), pp.251. ⟨10.1109/LSP.2012.2189104⟩
ISSN: 1558-2361
1070-9908
DOI: 10.1109/lsp.2012.2189104
Popis: International audience; This paper is devoted to the problem of sampling Gaussian distributions in high dimension. Solutions exist for two specific structures of inverse covariance: sparse and circulant. The proposed algorithm is valid in a more general case especially as it emerges in linear inverse problems as well as in some hierarchical or latent Gaussian models. It relies on a perturbation-optimization principle: adequate stochastic perturbation of a criterion and optimization of the perturbed criterion. It is proved that the criterion optimizer is a sample of the target distribution. The main motivation is in inverse problems related to general (non-convolutive) linear observation models and their solution in a Bayesian framework implemented through sampling algorithms when existing samplers are infeasible. It finds a direct application in myopic,unsupervised inversion methods as well as in some non-Gaussian inversion methods. An illustration focused on hyperparameter estimation for super-resolution method shows the interest and the feasibility of the proposed algorithm.
Databáze: OpenAIRE