Autor: |
Changmin Cho, Jason M. St. Clair, Jin Liao, Glenn M. Wolfe, Seokhan Jeong, Dae il Kang, Jinsoo Choi, Myung-Hwan Shin, Jinsoo Park, Jeong-Hoo Park, Alan Fried, Andrew Weinheimer, Donald R. Blake, Glenn S. Diskin, Kirk Ullmann, Samuel R. Hall, William H. Brune, Thomas F. Hanisco, Kyung-Eun Min |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Elementa 9(1), 00015 (2021). doi:10.1525/elementa.2021.00015 |
DOI: |
10.1525/elementa.2021.00015 |
Popis: |
Large industrial facilities, such as petrochemical complexes, have decisive effects on regional air quality: directly due to their own hazardous volatile organic compounds (VOCs) emissions and indirectly due to their contribution to secondary air pollution. In South Korea, pronounced ozone and particulate matter issues have been reported in industrial areas. In this study, we develop a new top-down VOC emission rate estimation method using in situ airborne formaldehyde (HCHO) observations in the downwind plume of the Daesan Petrochemical Complex (DPC) in South Korea during the 2016 Korea–United States Air Quality (KORUS-AQ) mission. On May 22, we observed a peak HCHO mole fraction of 12 ppb after a transport time of 2.5 h (distance approximately 36 km) under conditions where the HCHO photochemical lifetime was 1.8 h. Box model calculations indicate that this elevated HCHO is mainly due to secondary production (more than 90% after 2 h of plume aging) from various VOC precursors including ethene, propene, and 1,3-butadiene. We estimate a lower limit for yearly DPC VOC emissions of 31 (±8.7) × 103 MT/year for HCHO precursors and 53 (±15) × 103 MT/year for all measured primary VOCs. These estimates are 1.5–2.5 times higher than the latest Korean emission inventories, KORUSv5. This method is beneficial not only by tracking the sources, sinks, and evolution of HCHO but also by validating existing emission inventories. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|