Isogeometric analysis for singularly perturbed problems in 1-D: error estimates

Autor: Xenophontos, Christos, Sykopetritou, Irene
Přispěvatelé: Xenophontos, Christos [0000-0003-0862-3977]
Jazyk: němčina
Rok vydání: 2020
Předmět:
Zdroj: Electronic Transactions in Numerical Analysis
Popis: We consider one-dimensional singularly perturbed boundary value problems of reaction-convection-diffusion type, and the approximation of their solution using isogeometric analysis. In particular, we use a Galerkin formulation with B-splines as basis functions, defined on appropriately chosen knot vectors. We prove robust exponential convergence in the energy norm, independently of the singular perturbation parameters, and illustrate our findings through a numerical example. 1 25
Databáze: OpenAIRE