(q-)Supercongruences hit again

Autor: Wadim Zudilin
Rok vydání: 2021
Předmět:
Zdroj: Hardy-Ramanujan Journal, 43, pp. 46-55
Hardy-Ramanujan Journal, 43, 46-55
ISSN: 2804-7370
DOI: 10.46298/hrj.2021.7427
Popis: Using an intrinsic $q$-hypergeometric strategy, we generalise Dwork-type congruences $H(p^{s+1})/H(p^s)\equiv H(p^s)/H(p^{s-1})\pmod{p^3}$ for $s=1,2,\dots$ and $p$ a prime, when $H(N)$ are truncated hypergeometric sums corresponding to the periods of rigid Calabi--Yau threefolds.
Comment: 12 pages
Databáze: OpenAIRE