Popis: |
Trockenheiten und Hitzewellen beeinflussen unsere Gesellschaft und die Vegetation. Insbesondere im Zusammenhang mit dem Klimawandel sind die Auswirkungen auf die Vegetation von besonderer Bedeutung. Im globalen Kohlenstoffkreislauf sind terrestrische Ökosysteme normalerweise Senken von Kohlenstoffdioxid, können sich aber während und nach Klimaextremereignissen in Kohlenstoffquellen verwandeln. Ein entscheidender Aspekt hierbei ist die Rolle verschiedener Pflanzenarten und Vegetationstypen auf verschiedenen Skalen, die die Auswirkungen auf den Kohlenstoffkreislauf beeinflussen. Obwohl durch physiologische Unterschiede zwischen verschiedenen Pflanzenarten unterschiedliche Reaktionen auf Extremereignisse naheliegen, sind diese Unterschiede auf globaler Ebene nicht systematisch ausgewertet und vollständig verstanden. Ein weiter Aspekt ist, dass Klimaextremereignissen von Natur aus multivariat sind. Beispielsweise kann heiße Luft mehr Wasser aufnehmen als kalte Luft. Extremereignisse mit starken Auswirkungen waren in der Vergangenheit häufig multivariat, wie beispielsweise in Europa 2003, Russland 2012, oder den USA 2012. Diese multivariate Natur von Klimaextremen erfordert eine multivariate Perspektive auf diese Ereignisse. Bisher werden meistens einzelne Variablen zu Detektion von Extremereignissen genutzt und keine Kovariation oder Nichtlinearitäten berücksichtigt. Neue generische Workflows, die solche multivariaten Strukturen berücksichtigen, müssen erst entwickelt oder aus anderen Disziplinen übertragen werden, um uns eine multivariate Perspektive auf Klimaextreme zu bieten. Das übergeordnete Ziel der Dissertation ist es, die Erkennung und das Verständnis von Klimaextremen und deren Auswirkungen auf die Vegetation zu verbessern, indem eine breitere multivariate Perspektive ermöglicht wird, die bisherige Ansätze zur Erkennung von Extremereignissen ergänzt. |