N-hypercontractivity and similarity of Cowen-Douglas operators

Autor: Jing Xu, Hyun-Kyoung Kwon, Kui Ji
Rok vydání: 2020
Předmět:
Zdroj: Linear Algebra and its Applications. 592:20-47
ISSN: 0024-3795
DOI: 10.1016/j.laa.2020.01.017
Popis: When the backward shift operator on a weighted space $H^2_w=\{f=\sum_{j=0} ^{\infty} a_jz^j : \sum_{j=0}^{\infty} |a_j|^2w_j < \infty\}$ is an $n$-hypercontraction, we prove that the weights must satisfy the inequality $$\frac{w_{j+1}}{w_j} \leq {\frac{1+j}{n+j}}.$$ As an application of this result, it is shown that such an operator cannot be subnormal. We also give an example to illustrate the important role that the $n$-hypercontractivity assumption plays in determining the similarity of Cowen-Douglas operators in terms of the curvatures of their eigenvector bundles.
21 pages
Databáze: OpenAIRE