Random unconditional convergence of vector-valued Dirichlet series

Autor: Pedro Tradacete, Melisa Scotti, Felipe Marceca, Daniel Carando
Přispěvatelé: Ministerio de Economía y Competitividad (España)
Rok vydání: 2018
Předmět:
Zdroj: Digital.CSIC. Repositorio Institucional del CSIC
instname
DOI: 10.48550/arxiv.1812.03951
Popis: We study random unconditionality of Dirichlet series in vector-valued Hardy spaces Hp(X). It is shown that a Banach space X has type 2 (respectively, cotype 2) if and only if for every choice (xn)n⊂X it follows that (xnn−s)n is random unconditionally convergent (respectively, divergent) in H2(X). The analogous question on Hp(X) spaces for p≠2 is also explored. We also provide explicit examples exhibiting the differences between the unconditionality of (xnn−s)n in Hp(X) and that of (xnzn)n in Hp(X). © 2019 Elsevier Inc.
The first three authors were partially supported by CONICET -PIP 11220130100329CO and ANPCyT PICT 2015-2299 . The second and third authors are also supported by a CONICET doctoral fellowship. Fourth author gratefully acknowledges support of Spanish Ministerio de Economía, Industria y Competitividad through grants MTM2016-76808-P , MTM2016-75196-P , and the “ Severo Ochoa Programme for Centres of Excellence in R&D ” ( SEV-2015-0554 ).
Databáze: OpenAIRE