Random unconditional convergence of vector-valued Dirichlet series
Autor: | Pedro Tradacete, Melisa Scotti, Felipe Marceca, Daniel Carando |
---|---|
Přispěvatelé: | Ministerio de Economía y Competitividad (España) |
Rok vydání: | 2018 |
Předmět: |
Mathematics::Functional Analysis
010102 general mathematics Banach space Random unconditionality Type (model theory) Hardy space Computer Science::Computational Geometry 01 natural sciences Functional Analysis (math.FA) Combinatorics Mathematics - Functional Analysis symbols.namesake 30B50 32A35 46G20 Condensed Matter::Superconductivity 0103 physical sciences symbols FOS: Mathematics Unconditional convergence 010307 mathematical physics 0101 mathematics Dirichlet series Analysis Mathematics |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname |
DOI: | 10.48550/arxiv.1812.03951 |
Popis: | We study random unconditionality of Dirichlet series in vector-valued Hardy spaces Hp(X). It is shown that a Banach space X has type 2 (respectively, cotype 2) if and only if for every choice (xn)n⊂X it follows that (xnn−s)n is random unconditionally convergent (respectively, divergent) in H2(X). The analogous question on Hp(X) spaces for p≠2 is also explored. We also provide explicit examples exhibiting the differences between the unconditionality of (xnn−s)n in Hp(X) and that of (xnzn)n in Hp(X). © 2019 Elsevier Inc. The first three authors were partially supported by CONICET -PIP 11220130100329CO and ANPCyT PICT 2015-2299 . The second and third authors are also supported by a CONICET doctoral fellowship. Fourth author gratefully acknowledges support of Spanish Ministerio de Economía, Industria y Competitividad through grants MTM2016-76808-P , MTM2016-75196-P , and the “ Severo Ochoa Programme for Centres of Excellence in R&D ” ( SEV-2015-0554 ). |
Databáze: | OpenAIRE |
Externí odkaz: |