Projection of future climate change impacts on nonpoint source pollution loads for a forest dominant dam watershed by reflecting future vegetation canopy in a Soil and Water Assessment Tool model
Autor: | Jong Y. Park, Seong J. Kim, Mi S. Lee, Geun Ae Park, Hyung Jin Shin, In K. Jung, Min J. Park |
---|---|
Rok vydání: | 2010 |
Předmět: |
Canopy
Hydrology Environmental Engineering Watershed Soil and Water Assessment Tool Climate Change Water Pollution Climate change Vegetation Plants Models Biological Republic of Korea Environmental science Moderate-resolution imaging spectroradiometer Leaf area index Nonpoint source pollution Ecosystem Water Science and Technology Forecasting |
Zdroj: | Water science and technology : a journal of the International Association on Water Pollution Research. 61(8) |
ISSN: | 0273-1223 |
Popis: | This study is to assess the future impact of climate change on hydrological behavior considering future vegetation canopy prediction and its propagation to nonpoint source pollution (NPS) loads. The SWAT (Soil and Water Assessment Tool) model was used for the assessment. For a forest dominant ChungjuDam watershed of South Korea, the MIROC3.2hires climate data of SRES A1B and B1 scenarios were adopted and downscaled for the watershed. The future vegetation canopy information was projected by the monthly relationship between Terra MODIS (MODerate resolution Imaging Spectroradiometer) LAI (Leaf Area Index) and temperature. The future predicted LAI increased up to 1.9 in 2080s April and October because of the temperature increase 3.6°C and 5.3°C respectively. By reflecting the future LAI changes, the future estimated percent changes of maximum annual dam inflow, SS, T-N, and T-P were + 42.5% in 2080s A1B,−35.6% in 2020s A1B,+73.7% in 2080s A1B and−21.0% in 2080s B1 scenario respectively. The increase of T-N load was from the increase of subsurface lateral flows and the groundwater recharges by the future rainfall increase. The decrease of T-P load was by decrease of sediment load during wet days because the effect of LAI increase is greater than the increase of rainfall. |
Databáze: | OpenAIRE |
Externí odkaz: |