Geometric Deep Learning for Molecular Crystal Structure Prediction
Autor: | Michael Kilgour, Jutta Rogal, Mark Tuckerman |
---|---|
Rok vydání: | 2023 |
Předmět: |
Chemical Physics (physics.chem-ph)
FOS: Computer and information sciences Condensed Matter - Materials Science Computer Science - Machine Learning Physics - Chemical Physics Materials Science (cond-mat.mtrl-sci) FOS: Physical sciences Computational Physics (physics.comp-ph) Physical and Theoretical Chemistry Physics - Computational Physics Machine Learning (cs.LG) Computer Science Applications |
Zdroj: | Journal of Chemical Theory and Computation. |
ISSN: | 1549-9626 1549-9618 |
Popis: | We develop and test new machine learning strategies for accelerating molecular crystal structure ranking and crystal property prediction using tools from geometric deep learning on molecular graphs. Leveraging developments in graph-based learning and the availability of large molecular crystal datasets, we train models for density prediction and stability ranking which are accurate, fast to evaluate, and applicable to molecules of widely varying size and composition. Our density prediction model, MolXtalNet-D, achieves state of the art performance, with lower than 2% mean absolute error on a large and diverse test dataset. Our crystal ranking tool, MolXtalNet-S, correctly discriminates experimental samples from synthetically generated fakes and is further validated through analysis of the submissions to the Cambridge Structural Database Blind Tests 5 and 6. Our new tools are computationally cheap and flexible enough to be deployed within an existing crystal structure prediction pipeline both to reduce the search space and score/filter crystal candidates. |
Databáze: | OpenAIRE |
Externí odkaz: |