Prediction of lateral variations in reservoir properties throughout an interpreted seismic horizon using an artificial neural network

Autor: Ramón García Martínez, Darío Sergio Cersósimo, Claudia L. Ravazzoli
Rok vydání: 2016
Předmět:
Zdroj: The Leading Edge. 35:265-269
ISSN: 1938-3789
1070-485X
DOI: 10.1190/tle35030265.1
Popis: Successful use of an artificial neural network is shown to predict lateral variations of seismic velocity, density, thickness, and gamma rays associated with sand dune reservoirs identified on a previously interpreted seismic horizon. The work is presented in two main sections. Section one is a feasibility analysis based on synthetic data. A known geologic model is used, performed by pseudowells, in which lateral variations in seismic velocity, density, and gamma ray values are related to the dunes. The synthetic seismic model and the attributes derived are used as training input in the neural network. Section two is a real case example where the methodology is applied to a real seismic data set. Results indicate that using a set of data and attributes restricted to a time interval corresponding to a previously interpreted seismic horizon is more efficient than using a whole data cube, involving a very large volume of data. Fil: Cersósimo, Darío Sergio. GALP Energía; Portugal Fil: Ravazzoli, Claudia Leonor. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: García Martinez, Ramón. Universidad Nacional de Lanús; Argentina
Databáze: OpenAIRE