Infinite Horizon Optimal Control of Non-Convex Problems under State Constraints

Autor: Hélène Frankowska
Přispěvatelé: Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Air Force Office of Scientific Research under award number FA9550-18-1-0254., Toru Maruyama
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Advances in Mathematical Economics
Advances in Mathematical Economics, 23, Springer, 2020, Advances in Mathematical Economics, 978-981-15-0713-7. ⟨10.1007/978-981-15-0713-7_2⟩
Advances in Mathematical Economics ISBN: 9789811507120
DOI: 10.1007/978-981-15-0713-7_2⟩
Popis: International audience; We consider the undiscounted infinite horizon optimal control problem under state constraints in the absence of convexity/concavity assumptions. Then the value function is, in general, nonsmooth. Using the tools of set-valued and nonsmooth analysis, the necessary optimality conditions and sensitivity relations are derived in such a framework. We also investigate relaxation theorems and uniqueness of solutions of the Hamilton-Jacobi-Bellman equation arising in this setting.
Databáze: OpenAIRE