Relations between slices and quotients of the algebraic cobordism spectrum
Autor: | Markus Spitzweck |
---|---|
Rok vydání: | 2010 |
Předmět: |
ddc:510
Discrete mathematics 14F42 Pure mathematics Conjecture Algebraic cobordism 19E20 510 Mathematik K-theory Mathematics::Algebraic Topology Spectrum (topology) Algebraic cycle Mathematics - Algebraic Geometry Mathematics (miscellaneous) Mathematics::K-Theory and Homology FOS: Mathematics 55N22 Algebraic Topology (math.AT) Mathematics - Algebraic Topology Slice algebraic cobordism spectrum Algebraic Geometry (math.AG) Quotient Mathematics |
Zdroj: | Homology Homotopy Appl. 12, no. 2 (2010), 335-351 |
ISSN: | 1532-0081 1532-0073 |
DOI: | 10.4310/hha.2010.v12.n2.a11 |
Popis: | We prove a relative statement about the slices of the algebraic cobordism spectrum. If the map from MGL to a certain quotient of MGL introduced by Hopkins and Morel is the map to the zero-slice then a relative version of Voevodsky's conjecture on the slices of MGL holds true. We outline the picture for K-theory and rational slices. 15 pages; misprints corrected |
Databáze: | OpenAIRE |
Externí odkaz: |