Large-scale synthesis of free-standing N-doped graphene using microwave plasma

Autor: Elena Tatarova, N. Bundaleska, Maria de Fátima Montemor, Miroslav Abrashev, Kush K. Upadhyay, Francisco Dias, B. Arnaudov, Ana Maria Ferraria, Amélia Almeida, E. Valcheva, A.M. Botelho do Rego, Julio Henriques
Rok vydání: 2018
Předmět:
Zdroj: Scientific Reports
Scientific Reports, Vol 8, Iss 1, Pp 1-11 (2018)
ISSN: 2045-2322
Popis: Direct assembling of N-graphene, i.e. nitrogen doped graphene, in a controllable manner was achieved using microwave plasmas at atmospheric pressure conditions. The synthesis is accomplished via a single step using ethanol and ammonia as carbon and nitrogen precursors. Tailoring of the high-energy density plasma environment results in a selective synthesis of N-graphene (~0.4% doping level) in a narrow range of externally controlled operational conditions, i.e. precursor and background gas fluxes, plasma reactor design and microwave power. Applying infrared (IR) and ultraviolet (UV) irradiation to the flow of free-standing sheets in the post-plasma zone carries out changes in the percentage of sp2, the N doping type and the oxygen functionalities. X-ray photoelectron spectroscopy (XPS) revealed the relative extension of the graphene sheets π-system and the type of nitrogen chemical functions present in the lattice structure. Scanning Electron microscopy (SEM), Transmission Electron microscopy (TEM) and Raman spectroscopy were applied to determine morphological and structural characteristics of the sheets. Optical emission and FT-IR spectroscopy were applied for characterization of the high-energy density plasma environment and outlet gas stream. Electrochemical measurements were also performed to elucidate the electrochemical behavior of NG for supercapacitor applications.
Databáze: OpenAIRE