Reeb’s Theorem and Periodic Orbits for a Rotating Hénon–Heiles Potential

Autor: Víctor Lanchares, Ana I. Pascual, Jesús F. Palacián, J. P. Salas, Manuel Iñarrea, Patricia Yanguas
Přispěvatelé: Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. INAMAT2 - Institute for Advanced Materials and Mathematics, Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila, Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. InaMat - Institute for Advanced Materials
Rok vydání: 2019
Předmět:
Zdroj: Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
ISSN: 1572-9222
1040-7294
DOI: 10.1007/s10884-019-09814-6
Popis: We apply Reeb’s theorem to prove the existence of periodic orbits in the rotating Hénon– Heiles system. To this end, a sort of detuned normal form is calculated that yields a reduced system with at most four non degenerate equilibrium points. Linear stability and bifurcations of equilibrium solutions mimic those for periodic solutions of the original system. We also determine heteroclinic connections that can account for transport phenomena. This work has been partly supported from the Spanish Ministry of Science and Innovation through the Projects MTM2014-59433-CO (Subprojects MTM2014-59433-C2-1-P and MTM2014-59433- C2-2-P), MTM2017-88137-CO (Subprojects MTM2017-88137-C2-1-P and MTM2017-88137-C2-2-P), and by University of La Rioja through Project REGI 2018751.
Databáze: OpenAIRE