On the prospect of identifying adaptive loci in recently bottlenecked populations
Autor: | Vera S. Domingues, Jeffrey D. Jensen, Hopi E. Hoekstra, Yu Ping Poh |
---|---|
Rok vydání: | 2014 |
Předmět: |
0106 biological sciences
Linkage disequilibrium Peromyscus Population Population Dynamics Adaptation Biological lcsh:Medicine Locus (genetics) 010603 evolutionary biology 01 natural sciences Linkage Disequilibrium 03 medical and health sciences Mice Animals Computer Simulation lcsh:Science education Domestication 030304 developmental biology Genetics 0303 health sciences education.field_of_study Likelihood Functions Evolutionary Biology Multidisciplinary Natural selection biology Ecology Population Biology Null model lcsh:R Ecology and Environmental Sciences Biology and Life Sciences biology.organism_classification Phenotype Founder Effect Genetics Population Evolutionary biology Genetic Loci Evolutionary Ecology Evolutionary ecology lcsh:Q Research Article |
Zdroj: | PLoS ONE PLOS ONE PLoS ONE, Vol 9, Iss 11, p e110579 (2014) |
ISSN: | 1932-6203 |
Popis: | Identifying adaptively important loci in recently bottlenecked populations?be it natural selection acting on a population following the colonization of novel habitats in the wild, or artificial selection during the domestication of a breed?remains a major challenge. Here we report the results of a simulation study examining the performance of available population-genetic tools for identifying genomic regions under selection. To illustrate our findings, we examined the interplay between selection and demography in two species of Peromyscus mice, for which we have independent evidence of selection acting on phenotype as well as functional evidence identifying the underlying genotype. With this unusual information, we tested whether population-genetic-based approaches could have been utilized to identify the adaptive locus. Contrary to published claims, we conclude that the use of the background site frequency spectrum as a null model is largely ineffective in bottlenecked populations. Results are quantified both for site frequency spectrum and linkage disequilibrium-based predictions, and are found to hold true across a large parameter space that encompasses many species and populations currently under study. These results suggest that the genomic footprint left by selection on both new and standing variation in strongly bottlenecked populations will be difficult, if not impossible, to find using current approaches. |
Databáze: | OpenAIRE |
Externí odkaz: |