Statistical inferences for type-II hybrid censoring data from the alpha power exponential distribution

Autor: M. S. Eliwa, Ziyad Ali Alhussain, Essam A. Ahmed, Hanan Haj Ahmed, Mukhtar M. Salah, M. El-Morshedy
Rok vydání: 2020
Předmět:
Exponential distribution
Location parameter
Statistical methods
Science
Materials Science
01 natural sciences
Shape parameter
010104 statistics & probability
symbols.namesake
Carbon Fiber
0502 economics and business
Expectation–maximization algorithm
Industrial Engineering
Statistical inference
Reliability Engineering
Applied mathematics
Computer Simulation
0101 mathematics
Fisher information
Materials
Mathematics
Statistical Data
050210 logistics & transportation
Likelihood Functions
Multidisciplinary
Statistical Models
Applied Mathematics
Simulation and Modeling
05 social sciences
Statistics
Reliability
Probability Theory
Censoring (statistics)
Research and analysis methods
Monte Carlo method
Physical sciences
Fibers
symbols
Medicine
Engineering and Technology
Mathematical and statistical techniques
Scale parameter
Algorithms
Research Article
Statistical Distributions
Zdroj: PLoS ONE
PLoS ONE, Vol 16, Iss 1, p e0244316 (2021)
ISSN: 1932-6203
Popis: This paper describes a method for computing estimates for the location parameter μ > 0 and scale parameter λ > 0 with fixed shape parameter α of the alpha power exponential distribution (APED) under type-II hybrid censored (T-IIHC) samples. We compute the maximum likelihood estimations (MLEs) of (μ, λ) by applying the Newton-Raphson method (NRM) and expectation maximization algorithm (EMA). In addition, the estimate hazard functions and reliability are evaluated by applying the invariance property of MLEs. We calculate the Fisher information matrix (FIM) by applying the missing information rule, which is important in finding the asymptotic confidence interval. Finally, the different proposed estimation methods are compared in simulation studies. A simulation example and real data example are analyzed to illustrate our estimation methods.
Databáze: OpenAIRE