Statistical inferences for type-II hybrid censoring data from the alpha power exponential distribution
Autor: | M. S. Eliwa, Ziyad Ali Alhussain, Essam A. Ahmed, Hanan Haj Ahmed, Mukhtar M. Salah, M. El-Morshedy |
---|---|
Rok vydání: | 2020 |
Předmět: |
Exponential distribution
Location parameter Statistical methods Science Materials Science 01 natural sciences Shape parameter 010104 statistics & probability symbols.namesake Carbon Fiber 0502 economics and business Expectation–maximization algorithm Industrial Engineering Statistical inference Reliability Engineering Applied mathematics Computer Simulation 0101 mathematics Fisher information Materials Mathematics Statistical Data 050210 logistics & transportation Likelihood Functions Multidisciplinary Statistical Models Applied Mathematics Simulation and Modeling 05 social sciences Statistics Reliability Probability Theory Censoring (statistics) Research and analysis methods Monte Carlo method Physical sciences Fibers symbols Medicine Engineering and Technology Mathematical and statistical techniques Scale parameter Algorithms Research Article Statistical Distributions |
Zdroj: | PLoS ONE PLoS ONE, Vol 16, Iss 1, p e0244316 (2021) |
ISSN: | 1932-6203 |
Popis: | This paper describes a method for computing estimates for the location parameter μ > 0 and scale parameter λ > 0 with fixed shape parameter α of the alpha power exponential distribution (APED) under type-II hybrid censored (T-IIHC) samples. We compute the maximum likelihood estimations (MLEs) of (μ, λ) by applying the Newton-Raphson method (NRM) and expectation maximization algorithm (EMA). In addition, the estimate hazard functions and reliability are evaluated by applying the invariance property of MLEs. We calculate the Fisher information matrix (FIM) by applying the missing information rule, which is important in finding the asymptotic confidence interval. Finally, the different proposed estimation methods are compared in simulation studies. A simulation example and real data example are analyzed to illustrate our estimation methods. |
Databáze: | OpenAIRE |
Externí odkaz: |