Super Edge-Connectivity and Zeroth-Order Randić Index
Autor: | Mei Lu, Zhi-Hong He |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Discussiones Mathematicae Graph Theory, Vol 40, Iss 4, Pp 971-984 (2020) |
ISSN: | 2083-5892 |
Popis: | Define the zeroth-order Randić index as R0(G)=∑x∈V(G)1dG(x),{R^0}\left( G \right) = \sum\nolimits_{x \in V\left( G \right)} {{1 \over {\sqrt {{d_G}} \left( x \right)}},} where dG(x) denotes the degree of the vertex x. In this paper, we present two sufficient conditions for graphs and triangle-free graphs, respectively, to be super edge-connected in terms of the zeroth-order Randić index. |
Databáze: | OpenAIRE |
Externí odkaz: |