A class of Integral Operators from Lebesgue spaces into Harmonic Bergman-Besov or Weighted Bloch Spaces
Autor: | Ömer Faruk Doğan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Statistics and Probability
Matematik Class (set theory) Pure mathematics Mathematics::Functional Analysis Algebra and Number Theory Mathematics - Complex Variables Harmonic Bergman-Besov space Harmonic (mathematics) integral operator Functional Analysis (math.FA) Mathematics - Functional Analysis Harmonic Bergman-Besov kernel Weighted harmonic Bloch space integral operator harmonic Bergman-Besov kernel harmonic Bergman-Besov space weighted harmonic Bloch space harmonic Bergman-Besov projection FOS: Mathematics Geometry and Topology Complex Variables (math.CV) Harmonic Bergman-Besov projection Lp space Mathematics Analysis |
Zdroj: | Volume: 50, Issue: 3 811-820 Hacettepe Journal of Mathematics and Statistics |
ISSN: | 2651-477X |
Popis: | We consider a class of two-parameter weighted integral operators induced by harmonic Bergman-Besov kernels on the unit ball of $\mathbb{R}^{n}$ and characterize precisely those that are bounded from Lebesgue spaces $L^{p}_{\alpha}$ into Harmonic Bergman-Besov $b^{q}_{\beta}$ or weighted Bloch Spaces $b^{\infty}_{\beta} $, for $1\leq p\leq\infty$, $1\leq q< \infty$ and $\alpha,\beta \in \mathbb{R}$. These operators can be viewed as generalizations of the harmonic Bergman-Besov projections. Also, our results remove the disturbing conditions $\beta>-1$ when $q Comment: arXiv admin note: text overlap with arXiv:2002.03193 |
Databáze: | OpenAIRE |
Externí odkaz: |