A class of Integral Operators from Lebesgue spaces into Harmonic Bergman-Besov or Weighted Bloch Spaces

Autor: Ömer Faruk Doğan
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Volume: 50, Issue: 3 811-820
Hacettepe Journal of Mathematics and Statistics
ISSN: 2651-477X
Popis: We consider a class of two-parameter weighted integral operators induced by harmonic Bergman-Besov kernels on the unit ball of $\mathbb{R}^{n}$ and characterize precisely those that are bounded from Lebesgue spaces $L^{p}_{\alpha}$ into Harmonic Bergman-Besov $b^{q}_{\beta}$ or weighted Bloch Spaces $b^{\infty}_{\beta} $, for $1\leq p\leq\infty$, $1\leq q< \infty$ and $\alpha,\beta \in \mathbb{R}$. These operators can be viewed as generalizations of the harmonic Bergman-Besov projections. Also, our results remove the disturbing conditions $\beta>-1$ when $q
Comment: arXiv admin note: text overlap with arXiv:2002.03193
Databáze: OpenAIRE