Orbital angular momentum from marginals of quadrature distributions

Autor: I. Rigas, P. de la Hoz, Jaroslav Řeháček, Luis L. Sánchez-Soto, Zdenek Hradil, Andrei B. Klimov, Gerd Leuchs
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Popis: We set forth a method to analyze the orbital angular momentum of a light field. Instead of using the canonical formalism for the conjugate pair angle-angular momentum, we model this latter variable by the superposition of two independent harmonic oscillators along two orthogonal axes. By describing each oscillator by a standard Wigner function, we derive, via a consistent change of variables, a comprehensive picture of the orbital angular momentum. We compare with previous approaches and show how this method works in some relevant examples.
7 pages, 2 color figures
Databáze: OpenAIRE