Orbital angular momentum from marginals of quadrature distributions
Autor: | I. Rigas, P. de la Hoz, Jaroslav Řeháček, Luis L. Sánchez-Soto, Zdenek Hradil, Andrei B. Klimov, Gerd Leuchs |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Physics
Angular momentum Quantum Physics FOS: Physical sciences Atomic and Molecular Physics and Optics Azimuthal quantum number Classical mechanics Total angular momentum quantum number Orbital motion Angular momentum coupling Angular momentum of light Orbital angular momentum of light Angular momentum operator Quantum Physics (quant-ph) |
Popis: | We set forth a method to analyze the orbital angular momentum of a light field. Instead of using the canonical formalism for the conjugate pair angle-angular momentum, we model this latter variable by the superposition of two independent harmonic oscillators along two orthogonal axes. By describing each oscillator by a standard Wigner function, we derive, via a consistent change of variables, a comprehensive picture of the orbital angular momentum. We compare with previous approaches and show how this method works in some relevant examples. 7 pages, 2 color figures |
Databáze: | OpenAIRE |
Externí odkaz: |