Iwahori component of Bessel model spaces
Autor: | Kei Yuen Chan, Gordan Savin |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Iwahori–Hecke algebra Mathematics - Number Theory 11F70 22E50 20C08 Applied Mathematics General Mathematics Field (mathematics) Space (mathematics) symbols.namesake FOS: Mathematics symbols Orthogonal group Component (group theory) Number Theory (math.NT) Representation Theory (math.RT) Mathematics::Representation Theory Mathematics - Representation Theory Bessel function Mathematics |
Zdroj: | Proceedings of the American Mathematical Society. 148:1487-1497 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/proc/14903 |
Popis: | Let $k_0$ be a $p$-adic field of odd residual characteristic, and $G$ a special orthogonal group defined as acting on a split $2n+1$-dimensional orthogonal space $V$ over $k_0$. Let $H$ be the Iwahori Hecke algebra of $G$. A purpose of this short article is to compute the Iwahori component of a Bessel model space and identify it with an explicit projective $H$-module. |
Databáze: | OpenAIRE |
Externí odkaz: |