Nuclear spin conservation enables state-to-state control of ultracold molecular reactions
Autor: | Lingbang Zhu, Ming-Guang Hu, Goulven Quéméner, Kang-Kuen Ni, Matthew A. Nichols, Yu Liu, Olivier Dulieu |
---|---|
Přispěvatelé: | Department of Chemistry and Chemical Biology [Harvard], Harvard University [Cambridge], Department of Physics [Harvard], Laboratoire Aimé Cotton (LAC), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE30-0015,FEW2MANY-SHIELD,Ecrantage collisionnel à petit et grand nombre de corps de molécules dipolaires ultrafroides(2017) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Spins
[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] 010405 organic chemistry Chemistry General Chemical Engineering Parity (physics) General Chemistry Quantum entanglement 010402 general chemistry 01 natural sciences 0104 chemical sciences Reaction rate [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry [PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] Reaction dynamics Chemical physics Quantum state Ionization Quantum statistical mechanics Nuclear Experiment |
Zdroj: | Nature Chemistry Nature Chemistry, Nature Publishing Group, 2021, 13, pp.435-440. ⟨10.1038/s41557-020-00610-0⟩ |
ISSN: | 1755-4330 |
DOI: | 10.1038/s41557-020-00610-0⟩ |
Popis: | No comment; International audience; Quantum-state control of reactive systems has enabled microscopic probes of underlying interaction potentials and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. Here, we realize this goal by utilizing the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules we find that the system retains a near-perfect memory of the reactants’ nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a reaction with quantum-state resolution. The techniques demonstrated here open up the possibilities to study quantum entanglement between reaction products and ultracold reaction dynamics at the state-to-state level. |
Databáze: | OpenAIRE |
Externí odkaz: |