DNA translocation mechanism of the MCM complex and implications for replication initiation

Autor: Eric J. Enemark, Martin Meagher, Leslie B Epling
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Nature Communications, Vol 10, Iss 1, Pp 1-13 (2019)
Nature Communications
ISSN: 2041-1723
Popis: The DNA translocation activity of the minichromosome maintenance (MCM) complex powers DNA strand separation of the replication forks of eukaryotes and archaea. Here we illustrate an atomic level mechanism for this activity with a crystal structure of an archaeal MCM hexamer bound to single-stranded DNA and nucleotide cofactors. Sequence conservation indicates this rotary mechanism is fully possible for all eukaryotes and archaea. The structure definitively demonstrates the ring orients during translocation with the N-terminal domain leading, indicating that the translocation activity could also provide the physical basis of replication initiation where a double-hexamer idly encircling double-stranded DNA transforms to single-hexamers that encircle only one strand. In this mechanism, each strand binds to the N-terminal tier of one hexamer and the AAA+ tier of the other hexamer such that one ring pulls on the other, aligning equivalent interfaces to enable each hexamer to pull its translocation strand outside of the opposing hexamer.
Eukaryotes and archaea use a heximeric ring-shaped MCM helicase to unwind the DNA template during replication. Here the authors present a crystal structure of the MCM complex from archaeon S. solfataricus bound to single-stranded DNA, and to a combination of ADP, and ATP-mimic, ADP-BeF3.
Databáze: OpenAIRE