Integrated Metabolomics and Proteomics Analyses in the Local Milieu of Islet Allografts in Rejection versus Tolerance
Autor: | L. Betancourt, Charles Ansong, Daniel Paredes, Midhat H. Abdulreda, Gerardo Ceballos, Ernesto S. Nakayasu, Luis F. Hernandez |
---|---|
Rok vydání: | 2021 |
Předmět: |
Graft Rejection
Male Islets of Langerhans Transplantation intraocular transplant Proteomics Immune tolerance Mice anterior chamber of the eye Insulin-Secreting Cells M2 macrophages Biology (General) LC-MS (liquid chromatography-mass spectrometry) M1 macrophages Spectroscopy tolerance geography.geographical_feature_category General Medicine Allografts Islet metabolomics Warburg effect Tregs (T regulatory cells) Computer Science Applications Chemistry Type 1 diabetes medicine.anatomical_structure Transplantation Tolerance rejection Teff (T effector cells) QH301-705.5 Article Catalysis Inorganic Chemistry proteomics Immune system Metabolomics medicine Metabolome Animals Physical and Theoretical Chemistry QD1-999 Molecular Biology geography pancreatic islets MEKC-LIFD (micellar electrokinetic chromatography with laser induced fluorescence detection) business.industry Pancreatic islets immune regulation Organic Chemistry allogeneic islet transplant Immunology T1D business |
Zdroj: | International Journal of Molecular Sciences, Vol 22, Iss 8754, p 8754 (2021) International Journal of Molecular Sciences Volume 22 Issue 16 |
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms22168754 |
Popis: | An understanding of the immune mechanisms that lead to rejection versus tolerance of allogeneic pancreatic islet grafts is of paramount importance, as it facilitates the development of innovative methods to improve the transplant outcome. Here, we used our established intraocular islet transplant model to gain novel insight into changes in the local metabolome and proteome within the islet allograft’s immediate microenvironment in association with immune-mediated rejection or tolerance. We performed integrated metabolomics and proteomics analyses in aqueous humor samples representative of the graft’s microenvironment under each transplant outcome. The results showed that several free amino acids, small primary amines, and soluble proteins related to the Warburg effect were upregulated or downregulated in association with either outcome. In general, the observed shifts in the local metabolite and protein profiles in association with rejection were consistent with established pro-inflammatory metabolic pathways and those observed in association with tolerance were immune regulatory. Taken together, the current findings further support the potential of metabolic reprogramming of immune cells towards immune regulation through targeted pharmacological and dietary interventions against specific metabolic pathways that promote the Warburg effect to prevent the rejection of transplanted islets and promote their immune tolerance. |
Databáze: | OpenAIRE |
Externí odkaz: |