Projective duals to algebraic and tropical hypersurfaces

Autor: Nathan Ilten, Yoav Len
Přispěvatelé: University of St Andrews. Pure Mathematics
Rok vydání: 2019
Předmět:
Zdroj: Proceedings of the London Mathematical Society. 119:1234-1278
ISSN: 1460-244X
0024-6115
DOI: 10.1112/plms.12268
Popis: We study a tropical analogue of the projective dual variety of a hypersurface. When $X$ is a curve in $\mathbb{P}^2$ or a surface in $\mathbb{P}^3$, we provide an explicit description of $\text{Trop}(X^*)$ in terms of $\text{Trop}(X)$, as long as $\text{Trop}(X)$ is smooth and satisfies a mild genericity condition. As a consequence, when $X$ is a curve we describe the transformation of Newton polygons under projective duality, and recover classical formulas for the degree of a dual plane curve. For higher dimensional hypersurfaces $X$, we give a partial description of $\text{Trop}(X^*)$.
47 pages, 13 figures; v2 minor revisions; accepted to PLMS
Databáze: OpenAIRE