Convergence for varying measures in the topological case
Autor: | Valeria Marraffa, Luisa di Piazza, Kazimierz Musial, Anna Rita Sambucini |
---|---|
Přispěvatelé: | Valeria Marraffa, Luisa di Piazza, Kazimierz Musial, Anna Rita Sambucini |
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
Mathematics - Functional Analysis
28B05 Primary 28B20 Secondary 26E25 26A39 28B05 46G10 54C60 54C65 26A39 setwise convergence vaguely convergence weak convergence of measures locally compact Hausdorff space Vitali's Theorem Settore MAT/05 - Analisi Matematica 54C60 FOS: Mathematics Primary 28B20 Secondary 26E25 54C65 Functional Analysis (math.FA) 46G10 |
Popis: | In this paper convergence theorems for sequences of scalar, vector and multivalued Pettis integrable functions on a topological measure space are proved for varying measures vaguely convergent. 21 pages |
Databáze: | OpenAIRE |
Externí odkaz: |