Volume Estimates on the Critical Sets of Solutions to Elliptic PDEs

Autor: Daniele Valtorta, Aaron Naber
Přispěvatelé: Naber, A, Valtorta, D
Rok vydání: 2017
Předmět:
Zdroj: Communications on Pure and Applied Mathematics. 70:1835-1897
ISSN: 0010-3640
DOI: 10.1002/cpa.21708
Popis: In this paper we study solutions to elliptic linear equations $L(u)=\partial_i(a^{ij}(x)\partial_j u) + b^i(x) \partial_i u + c(x) u=0$, either on $R^n$ or a Riemannian manifold, under the assumption of Lipschitz control on the coefficients $a^{ij}$. We focus our attention on the critical set $Cr(u)\equiv\{x:|\nabla u|=0\}$ and the singular set $S(u)\equiv\{x:u=|\nabla u|=0\}$, and more importantly on effective versions of these. Currently, under the coefficient control we have assumed, the strongest results in the literature say that the singular set is n-2-dimensional, however at this point it has not even been shown that $H^{n-2}(S)
Databáze: OpenAIRE