Local convergence of large random triangulations coupled with an Ising model

Autor: Gilles Schaeffer, Laurent Ménard, Marie Albenque
Přispěvatelé: Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Université Paris Nanterre (UPN), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Modélisation aléatoire de Paris X (MODAL'X), Fédération Parisienne de Modélisation Mathématique (FP2M), Centre National de la Recherche Scientifique (CNRS), ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014), ANR-16-CE40-0009,GATO,Graphes, Algorithmes et TOpologie(2016), ANR-11-LABX-0023,MME-DII,Modèles Mathématiques et Economiques de la Dynamique, de l'Incertitude et des Interactions(2011)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Computer Science::Machine Learning
Phase transition
82B44
General Mathematics
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Computer Science::Digital Libraries
01 natural sciences
Measure (mathematics)
Statistics::Machine Learning
010104 statistics & probability
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
FOS: Mathematics
Mathematics - Combinatorics
60C05
Limit (mathematics)
Boundary value problem
0101 mathematics
60D05
Mathematics
Spins
Applied Mathematics
010102 general mathematics
Mathematical analysis
Probability (math.PR)
Mathematics subject classification 05A15
Simple random sample
Local convergence
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
05A16
60K35
Computer Science::Mathematical Software
Ising model
05C30
Combinatorics (math.CO)
Mathematics - Probability
Zdroj: Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, 2021, 374 (1), pp.175-217. ⟨10.1090/tran/8150⟩
Transactions of the American Mathematical Society, American Mathematical Society, 2021, 374 (1), pp.175-217. ⟨10.1090/tran/8150⟩
ISSN: 0002-9947
1088-6850
DOI: 10.1090/tran/8150⟩
Popis: We prove the existence of the local weak limit of the measure obtained by sampling random triangulations of size $n$ decorated by an Ising configuration with a weight proportional to the energy of this configuration. To do so, we establish the algebraicity and the asymptotic behaviour of the partition functions of triangulations with spins for any boundary condition. In particular, we show that these partition functions all have the same phase transition at the same critical temperature. Some properties of the limiting object -- called the Infinite Ising Planar Triangulation -- are derived, including the recurrence of the simple random walk at the critical temperature.
42 pages, 9 figures
Databáze: OpenAIRE