Safe Disassociation of Set-Valued Datasets

Autor: Awad, Nancy, Al Bouna, Bechara, Couchot, Jean-François, Philippe, Laurent
Přispěvatelé: Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Université Antonine (UA)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Intelligent Information Systems
Journal of Intelligent Information Systems, 2019, 53 (3), pp.547-562
Popis: Disassociation introduced by Terrovitis et al. is a bucketization based anonimyzation technique that divides a set-valued dataset into several clusters to hide the link between individuals and their complete set of items. It increases the utility of the anonymized dataset, but on the other side, it raises many privacy concerns, one in particular, is when the items are tightly coupled to form what is called, a cover problem. In this paper, we present safe disassociation, a technique that relies on partial-suppression, to overcome the aforementioned privacy breach encountered when disassociating set-valued datasets. Safe disassociation allows the $k^m$-anonymity privacy constraint to be extended to a bucketized dataset and copes with the cover problem. We describe our algorithm that achieves the safe disassociation and we provide a set of experiments to demonstrate its efficiency.
Databáze: OpenAIRE