Physics reach of the XENON1T dark matter experiment

Autor: M. von Sivers, Hui Wang, M. Weber, C. Grignon, S. Macmullin, P. Barrow, L. Bütikofer, T. Berger, Auke-Pieter Colijn, D. Mayani, S. Rosendahl, M. Messina, Florian Kaether, T. Marrodán Undagoitia, Jean-Pierre Cussonneau, M. P. Decowski, Manfred Lindner, A. Manfredini, M. Cervantes, E. K. U. Gross, C. Hasterok, D. Lellouch, A. Tiseni, C. Geis, A. Rizzo, P. A. Breur, H. Landsman, A. Lyashenko, P. Di Gangi, E. Duchovni, Laura Baudis, Luke Goetzke, Bart Pelssers, Giacomo Bruno, P. de Perio, H. Contreras, N. Priel, João Cardoso, S. E. A. Orrigo, W. Hampel, P. Shagin, J. A. M. Lopes, A. Kish, Julien Masbou, L. Levinson, C. Tunnell, C. Balan, F. D. Amaro, Michelle Galloway, L. Scotto Lavina, April S. Brown, R. Itay, D. Franco, F. Arneodo, F. Piastra, M. Le Calloch, Guillaume Plante, N. Rupp, S. Fattori, J. Pienaar, Z. Greene, Jochen Schreiner, B. Miguez, S. Bruenner, J. Wulf, S. Schindler, Lior Arazi, K. Micheneau, G. C. Trinchero, Boris Bauermeister, C. Levy, Jelle Aalbers, G. Kessler, Hardy Simgen, A. D. Ferella, M. Anthony, S. Reichard, L. Rauch, Ch. Weinheimer, A. J. Melgarejo Fernandez, D. Thers, R. F. Lang, M. Alfonsi, Jan Conrad, J. Naganoma, C. Reuter, M. Selvi, A. Fieguth, D. Coderre, R. Wall, Y. Meng, M. Murra, A. Molinario, M. Scheibelhut, J.M.F. dos Santos, F. Agostini, B. Kaminsky, D. Cichon, Sebastian Lindemann, Elena Aprile, Ethan Brown, F. V. Massoli, W. Fulgione, Yuehuan Wei, M. Garbini, A. Stein, Amos Breskin, Yanxi Zhang, Uwe Oberlack, A. Di Giovanni, Marc Schumann, P. Pakarha, Ran Budnik, Gabriella Sartorelli, R. Persiani
Přispěvatelé: GRAPPA (ITFA, IoP, FNWI), Faculty of Science, Other Research IHEF (IoP, FNWI), Gravitation and Astroparticle Physics Amsterdam, IoP (FNWI), IHEF (IoP, FNWI), Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F.D., Anthony, M., Arazi, L., Arneodo, F., Balan, C., Barrow, P., Baudis, L., Bauermeister, B., Berger, T., Breur, P., Breskin, A., Brown, A., Brown, E., Bruenner, S., Bruno, G., Budnik, R., Bütikofer, L., Cardoso, J.M.R., Cervantes, M., Cichon, D., Coderre, D., Colijn, A.P., Conrad, J., Contreras, H., Cussonneau, J.P., Decowski, M.P., De Perio, P., Gangi, P. Di, Giovanni, A. Di, Duchovni, E., Fattori, S., Ferella, A.D., Fieguth, A., Franco, D., Fulgione, W., Galloway, M., Garbini, M., Geis, C., Goetzke, L.W., Greene, Z., Grignon, C., Gross, E., Hampel, W., Hasterok, C., Itay, R., Kaether, F., Kaminsky, B., Kessler, G., Kish, A., Landsman, H., Lang, R.F., Lellouch, D., Levinson, L., Calloch, M. Le, Levy, C., Lindemann, S., Lindner, M., Lopes, J.A.M., Lyashenko, A., Macmullin, S., Manfredini, A., Undagoitia, T. Marrodán, Masbou, J., Massoli, F.V., Mayani, D., Fernandez, A.J. Melgarejo, Meng, Y., Messina, M., Micheneau, K., Miguez, B., Molinario, A., Murra, M., Naganoma, J., Oberlack, U., Orrigo, S.E.A., Pakarha, P., Pelssers, B., Persiani, R., Piastra, F., Pienaar, J., Plante, G., Priel, N., Rauch, L., Reichard, S., Reuter, C., Rizzo, A., Rosendahl, S., Rupp, N., Santos, J.M.F. Do, Sartorelli, G., Scheibelhut, M., Schindler, S., Schreiner, J., Schumann, M., Lavina, L. Scotto, Selvi, M, Shagin, P., Simgen, H., Stein, A., Thers, D., Tiseni, A., Trinchero, G., Tunnell, C., Sivers, M. Von, Wall, R., Wang, H., Weber, M., Wei, Y., Weinheimer, C., Wulf, J., Zhang, Y.
Rok vydání: 2016
Předmět:
Zdroj: Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics, 2016(4):027. IOP Publishing Ltd.
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
ISSN: 1475-7516
DOI: 10.1088/1475-7516/2016/04/027
Popis: The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 \pm 0.1)$ ($\rm{t} \cdot y)^{-1}$ from radiogenic neutrons, $(1.8 \pm 0.3) \cdot 10^{-2}$ ($\rm{t} \cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($\rm{t} \cdot y)^{-1}$ from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency $\mathcal{L}_\mathrm{eff}$, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a $2$ y measurement in $1$ t fiducial volume, the sensitivity reaches a minimum cross section of $1.6 \cdot 10^{-47}$ cm$^2$ at m$_\chi$=$50$ GeV/$c^2$.
Comment: 36 pages, 18 figures, published by JCAP
Databáze: OpenAIRE