Reflexivity of rings via nilpotent elements
Autor: | Burcu Ungor, Abdullah Harmanci, Handan Kose, Yosum Kurtulmaz |
---|---|
Přispěvatelé: | Kurtulmaz, Yosum |
Rok vydání: | 2020 |
Předmět: |
Polynomial (hyperelastic model)
Mathematics::Functional Analysis Ring (mathematics) Mathematics::Commutative Algebra General Mathematics Mathematics - Rings and Algebras Zero element Combinatorics Nilpotent Identity (mathematics) Rings and Algebras (math.RA) Idempotence FOS: Mathematics Ideal (ring theory) Mathematics |
Zdroj: | Revista de la Union Matematica Argentina |
ISSN: | 1669-9637 0041-6932 |
DOI: | 10.33044/revuma.v61n2a06 |
Popis: | An ideal $I$ of a ring $R$ is called left N-reflexive if for any $a\in$ nil$(R)$, $b\in R$, being $aRb \subseteq I$ implies $bRa \subseteq I$ where nil$(R)$ is the set of all nilpotent elements of $R$. The ring $R$ is called left N-reflexive if the zero ideal is left N-reflexive. We study the properties of left N-reflexive rings and related concepts. Since reflexive rings and reduced rings are left N-reflexive, we investigate the sufficient conditions for left N-reflexive rings to be reflexive and reduced. We first consider basic extensions of left N-reflexive rings. For an ideal-symmetric ideal $I$ of a ring $R$, $R/I$ is left N-reflexive. If an ideal $I$ of a ring $R$ is reduced as a ring without identity and $R/I$ is left N-reflexive, then $R$ is left N-reflexive. If $R$ is a quasi-Armendariz ring and the coefficients of any nilpotent polynomial in $R[x]$ are nilpotent in $R$, it is proved that $R$ is left N-reflexive if and only if $R[x]$ is left N-reflexive. We show that the concept of N-reflexivity is weaker than that of reflexivity and stronger than that of left N-right idempotent reflexivity and right idempotent reflexivity which are introduced in Section 5. |
Databáze: | OpenAIRE |
Externí odkaz: |