Reflexivity of rings via nilpotent elements

Autor: Burcu Ungor, Abdullah Harmanci, Handan Kose, Yosum Kurtulmaz
Přispěvatelé: Kurtulmaz, Yosum
Rok vydání: 2020
Předmět:
Zdroj: Revista de la Union Matematica Argentina
ISSN: 1669-9637
0041-6932
DOI: 10.33044/revuma.v61n2a06
Popis: An ideal $I$ of a ring $R$ is called left N-reflexive if for any $a\in$ nil$(R)$, $b\in R$, being $aRb \subseteq I$ implies $bRa \subseteq I$ where nil$(R)$ is the set of all nilpotent elements of $R$. The ring $R$ is called left N-reflexive if the zero ideal is left N-reflexive. We study the properties of left N-reflexive rings and related concepts. Since reflexive rings and reduced rings are left N-reflexive, we investigate the sufficient conditions for left N-reflexive rings to be reflexive and reduced. We first consider basic extensions of left N-reflexive rings. For an ideal-symmetric ideal $I$ of a ring $R$, $R/I$ is left N-reflexive. If an ideal $I$ of a ring $R$ is reduced as a ring without identity and $R/I$ is left N-reflexive, then $R$ is left N-reflexive. If $R$ is a quasi-Armendariz ring and the coefficients of any nilpotent polynomial in $R[x]$ are nilpotent in $R$, it is proved that $R$ is left N-reflexive if and only if $R[x]$ is left N-reflexive. We show that the concept of N-reflexivity is weaker than that of reflexivity and stronger than that of left N-right idempotent reflexivity and right idempotent reflexivity which are introduced in Section 5.
Databáze: OpenAIRE