A new basis for the representation ring of a Weyl group
Autor: | George Lusztig |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Weyl group Property (philosophy) 010102 general mathematics MathematicsofComputing_GENERAL Basis (universal algebra) 01 natural sciences symbols.namesake Mathematics (miscellaneous) 0103 physical sciences Representation ring FOS: Mathematics symbols Grothendieck group 010307 mathematical physics Representation Theory (math.RT) 0101 mathematics GeneralLiterature_REFERENCE(e.g. dictionaries encyclopedias glossaries) Mathematics - Representation Theory Mathematics |
Zdroj: | Representation Theory of the American Mathematical Society. 23:439-461 |
ISSN: | 1088-4165 |
DOI: | 10.1090/ert/534 |
Popis: | Let W be a Weyl group. We define a new basis for the Grothendieck group of representations of W. This basis contains on the one hand the special representations of W and on the other hand the representations carried by the left cells of W. We show that the representations in the new basis have a certain bipositivity property. 26 pages |
Databáze: | OpenAIRE |
Externí odkaz: |