Receiver-channel based adaptive blind equalization approach for GPS dynamic multipath mitigation
Autor: | Tingfei Zhang, Xiaonan Xue, Yun Zhao |
---|---|
Rok vydání: | 2013 |
Předmět: |
Multipath mitigation
Engineering Satellite navigation business.industry Mechanical Engineering Real-time recursive least square algorithm Aerospace Engineering Data_CODINGANDINFORMATIONTHEORY Delay spread Correlation distortion Blind equalization Assisted GPS Computer Science::Networking and Internet Architecture Global Positioning System Electronic engineering Rake receiver Dynamic multipath mitigation business Multipath propagation Computer Science::Information Theory |
Zdroj: | Chinese Journal of Aeronautics. 26:378-384 |
ISSN: | 1000-9361 |
DOI: | 10.1016/j.cja.2013.02.015 |
Popis: | Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed, which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops. The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; therefore an increase in the number of correlator channels is required compared with conventional GPS receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response. Then, the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators’ outputs. To demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator, thus simulations under controlled dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase. |
Databáze: | OpenAIRE |
Externí odkaz: |