On cardinality of complementarity spectra of connected graphs
Autor: | David Sossa, Alberto Seeger |
---|---|
Přispěvatelé: | EA2151 Laboratoire de Mathématiques d'Avignon (LMA), Avignon Université (AU) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Numerical Analysis
Algebra and Number Theory media_common.quotation_subject 010102 general mathematics Spectrum (functional analysis) 010103 numerical & computational mathematics Infinity 01 natural sciences Upper and lower bounds Spectral line Combinatorics Cardinality Complementarity (molecular biology) Discrete Mathematics and Combinatorics Geometry and Topology 0101 mathematics [MATH]Mathematics [math] Finite set Connectivity ComputingMilieux_MISCELLANEOUS Mathematics media_common |
Zdroj: | Linear Algebra and its Applications Linear Algebra and its Applications, Elsevier, 2021, 614, pp.5-23. ⟨10.1016/j.laa.2019.11.012⟩ |
ISSN: | 0024-3795 |
Popis: | This work deals with complementarity spectra of connected graphs and, specifically, with the associated concept of spectral capacity of a finite set of connected graphs. The cardinality of the complementarity spectrum of a connected graph G serves as lower bound for the number of connected induced subgraphs of G. Motivated by this observation, we establish various results on cardinality of complementarity spectra. Special attention is paid to the asymptotic behavior of spectral capacities as the number of vertices goes to infinity. |
Databáze: | OpenAIRE |
Externí odkaz: |